Metamath Proof Explorer


Theorem rntrcl

Description: The range of the transitive closure is equal to the range of its base relation. (Contributed by RP, 1-Nov-2020)

Ref Expression
Assertion rntrcl
|- ( X e. V -> ran |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } = ran X )

Proof

Step Hyp Ref Expression
1 trclubg
 |-  ( X e. V -> |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } C_ ( X u. ( dom X X. ran X ) ) )
2 rnss
 |-  ( |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } C_ ( X u. ( dom X X. ran X ) ) -> ran |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } C_ ran ( X u. ( dom X X. ran X ) ) )
3 1 2 syl
 |-  ( X e. V -> ran |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } C_ ran ( X u. ( dom X X. ran X ) ) )
4 rnun
 |-  ran ( X u. ( dom X X. ran X ) ) = ( ran X u. ran ( dom X X. ran X ) )
5 rnxpss
 |-  ran ( dom X X. ran X ) C_ ran X
6 ssequn2
 |-  ( ran ( dom X X. ran X ) C_ ran X <-> ( ran X u. ran ( dom X X. ran X ) ) = ran X )
7 5 6 mpbi
 |-  ( ran X u. ran ( dom X X. ran X ) ) = ran X
8 4 7 eqtri
 |-  ran ( X u. ( dom X X. ran X ) ) = ran X
9 3 8 sseqtrdi
 |-  ( X e. V -> ran |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } C_ ran X )
10 ssmin
 |-  X C_ |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) }
11 rnss
 |-  ( X C_ |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } -> ran X C_ ran |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } )
12 10 11 mp1i
 |-  ( X e. V -> ran X C_ ran |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } )
13 9 12 eqssd
 |-  ( X e. V -> ran |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } = ran X )