Step |
Hyp |
Ref |
Expression |
1 |
|
trclubg |
|- ( X e. V -> |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } C_ ( X u. ( dom X X. ran X ) ) ) |
2 |
|
rnss |
|- ( |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } C_ ( X u. ( dom X X. ran X ) ) -> ran |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } C_ ran ( X u. ( dom X X. ran X ) ) ) |
3 |
1 2
|
syl |
|- ( X e. V -> ran |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } C_ ran ( X u. ( dom X X. ran X ) ) ) |
4 |
|
rnun |
|- ran ( X u. ( dom X X. ran X ) ) = ( ran X u. ran ( dom X X. ran X ) ) |
5 |
|
rnxpss |
|- ran ( dom X X. ran X ) C_ ran X |
6 |
|
ssequn2 |
|- ( ran ( dom X X. ran X ) C_ ran X <-> ( ran X u. ran ( dom X X. ran X ) ) = ran X ) |
7 |
5 6
|
mpbi |
|- ( ran X u. ran ( dom X X. ran X ) ) = ran X |
8 |
4 7
|
eqtri |
|- ran ( X u. ( dom X X. ran X ) ) = ran X |
9 |
3 8
|
sseqtrdi |
|- ( X e. V -> ran |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } C_ ran X ) |
10 |
|
ssmin |
|- X C_ |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } |
11 |
|
rnss |
|- ( X C_ |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } -> ran X C_ ran |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } ) |
12 |
10 11
|
mp1i |
|- ( X e. V -> ran X C_ ran |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } ) |
13 |
9 12
|
eqssd |
|- ( X e. V -> ran |^| { x | ( X C_ x /\ ( x o. x ) C_ x ) } = ran X ) |