Metamath Proof Explorer


Theorem trclubg

Description: The union with the Cartesian product of its domain and range is an upper bound for a set's transitive closure (as a relation). (Contributed by RP, 17-May-2020)

Ref Expression
Assertion trclubg
|- ( R e. V -> |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } C_ ( R u. ( dom R X. ran R ) ) )

Proof

Step Hyp Ref Expression
1 trclublem
 |-  ( R e. V -> ( R u. ( dom R X. ran R ) ) e. { r | ( R C_ r /\ ( r o. r ) C_ r ) } )
2 intss1
 |-  ( ( R u. ( dom R X. ran R ) ) e. { r | ( R C_ r /\ ( r o. r ) C_ r ) } -> |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } C_ ( R u. ( dom R X. ran R ) ) )
3 1 2 syl
 |-  ( R e. V -> |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } C_ ( R u. ( dom R X. ran R ) ) )