Description: The union with the Cartesian product of its domain and range is an upper bound for a set's transitive closure (as a relation). (Contributed by RP, 17-May-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | trclubg | |- ( R e. V -> |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } C_ ( R u. ( dom R X. ran R ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trclublem | |- ( R e. V -> ( R u. ( dom R X. ran R ) ) e. { r | ( R C_ r /\ ( r o. r ) C_ r ) } ) |
|
2 | intss1 | |- ( ( R u. ( dom R X. ran R ) ) e. { r | ( R C_ r /\ ( r o. r ) C_ r ) } -> |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } C_ ( R u. ( dom R X. ran R ) ) ) |
|
3 | 1 2 | syl | |- ( R e. V -> |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } C_ ( R u. ( dom R X. ran R ) ) ) |