Description: The union with the Cartesian product of its domain and range is an upper bound for a set's transitive closure (as a relation). (Contributed by RP, 17-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trclubg | |- ( R e. V -> |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } C_ ( R u. ( dom R X. ran R ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | trclublem |  |-  ( R e. V -> ( R u. ( dom R X. ran R ) ) e. { r | ( R C_ r /\ ( r o. r ) C_ r ) } ) | |
| 2 | intss1 |  |-  ( ( R u. ( dom R X. ran R ) ) e. { r | ( R C_ r /\ ( r o. r ) C_ r ) } -> |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } C_ ( R u. ( dom R X. ran R ) ) ) | |
| 3 | 1 2 | syl |  |-  ( R e. V -> |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } C_ ( R u. ( dom R X. ran R ) ) ) |