Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( R e. V -> R e. _V ) |
2 |
|
trclexlem |
|- ( R e. _V -> ( R u. ( dom R X. ran R ) ) e. _V ) |
3 |
|
trclubg |
|- ( R e. _V -> |^| { x | ( R C_ x /\ ( x o. x ) C_ x ) } C_ ( R u. ( dom R X. ran R ) ) ) |
4 |
2 3
|
ssexd |
|- ( R e. _V -> |^| { x | ( R C_ x /\ ( x o. x ) C_ x ) } e. _V ) |
5 |
|
trcleq1 |
|- ( r = R -> |^| { x | ( r C_ x /\ ( x o. x ) C_ x ) } = |^| { x | ( R C_ x /\ ( x o. x ) C_ x ) } ) |
6 |
|
df-trcl |
|- t+ = ( r e. _V |-> |^| { x | ( r C_ x /\ ( x o. x ) C_ x ) } ) |
7 |
5 6
|
fvmptg |
|- ( ( R e. _V /\ |^| { x | ( R C_ x /\ ( x o. x ) C_ x ) } e. _V ) -> ( t+ ` R ) = |^| { x | ( R C_ x /\ ( x o. x ) C_ x ) } ) |
8 |
1 4 7
|
syl2anc2 |
|- ( R e. V -> ( t+ ` R ) = |^| { x | ( R C_ x /\ ( x o. x ) C_ x ) } ) |