Metamath Proof Explorer


Theorem brintclab

Description: Two ways to express a binary relation which is the intersection of a class. (Contributed by RP, 4-Apr-2020)

Ref Expression
Assertion brintclab
|- ( A |^| { x | ph } B <-> A. x ( ph -> <. A , B >. e. x ) )

Proof

Step Hyp Ref Expression
1 df-br
 |-  ( A |^| { x | ph } B <-> <. A , B >. e. |^| { x | ph } )
2 opex
 |-  <. A , B >. e. _V
3 2 elintab
 |-  ( <. A , B >. e. |^| { x | ph } <-> A. x ( ph -> <. A , B >. e. x ) )
4 1 3 bitri
 |-  ( A |^| { x | ph } B <-> A. x ( ph -> <. A , B >. e. x ) )