Metamath Proof Explorer


Theorem brintclab

Description: Two ways to express a binary relation which is the intersection of a class. (Contributed by RP, 4-Apr-2020)

Ref Expression
Assertion brintclab ( 𝐴 { 𝑥𝜑 } 𝐵 ↔ ∀ 𝑥 ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑥 ) )

Proof

Step Hyp Ref Expression
1 df-br ( 𝐴 { 𝑥𝜑 } 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ { 𝑥𝜑 } )
2 opex 𝐴 , 𝐵 ⟩ ∈ V
3 2 elintab ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑥 ) )
4 1 3 bitri ( 𝐴 { 𝑥𝜑 } 𝐵 ↔ ∀ 𝑥 ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑥 ) )