Step |
Hyp |
Ref |
Expression |
1 |
|
trclfv |
⊢ ( 𝑅 ∈ 𝑉 → ( t+ ‘ 𝑅 ) = ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } ) |
2 |
1
|
breqd |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝐴 ( t+ ‘ 𝑅 ) 𝐵 ↔ 𝐴 ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝐵 ) ) |
3 |
|
brintclab |
⊢ ( 𝐴 ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝐵 ↔ ∀ 𝑟 ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) → 〈 𝐴 , 𝐵 〉 ∈ 𝑟 ) ) |
4 |
|
df-br |
⊢ ( 𝐴 𝑟 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝑟 ) |
5 |
4
|
imbi2i |
⊢ ( ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) → 𝐴 𝑟 𝐵 ) ↔ ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) → 〈 𝐴 , 𝐵 〉 ∈ 𝑟 ) ) |
6 |
5
|
albii |
⊢ ( ∀ 𝑟 ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) → 𝐴 𝑟 𝐵 ) ↔ ∀ 𝑟 ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) → 〈 𝐴 , 𝐵 〉 ∈ 𝑟 ) ) |
7 |
3 6
|
bitr4i |
⊢ ( 𝐴 ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝐵 ↔ ∀ 𝑟 ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) → 𝐴 𝑟 𝐵 ) ) |
8 |
2 7
|
bitrdi |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝐴 ( t+ ‘ 𝑅 ) 𝐵 ↔ ∀ 𝑟 ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) → 𝐴 𝑟 𝐵 ) ) ) |