Metamath Proof Explorer


Theorem brtrclfv

Description: Two ways of expressing the transitive closure of a binary relation. (Contributed by RP, 9-May-2020)

Ref Expression
Assertion brtrclfv ( 𝑅𝑉 → ( 𝐴 ( t+ ‘ 𝑅 ) 𝐵 ↔ ∀ 𝑟 ( ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) → 𝐴 𝑟 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 trclfv ( 𝑅𝑉 → ( t+ ‘ 𝑅 ) = { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } )
2 1 breqd ( 𝑅𝑉 → ( 𝐴 ( t+ ‘ 𝑅 ) 𝐵𝐴 { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } 𝐵 ) )
3 brintclab ( 𝐴 { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } 𝐵 ↔ ∀ 𝑟 ( ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑟 ) )
4 df-br ( 𝐴 𝑟 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑟 )
5 4 imbi2i ( ( ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) → 𝐴 𝑟 𝐵 ) ↔ ( ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑟 ) )
6 5 albii ( ∀ 𝑟 ( ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) → 𝐴 𝑟 𝐵 ) ↔ ∀ 𝑟 ( ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑟 ) )
7 3 6 bitr4i ( 𝐴 { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } 𝐵 ↔ ∀ 𝑟 ( ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) → 𝐴 𝑟 𝐵 ) )
8 2 7 bitrdi ( 𝑅𝑉 → ( 𝐴 ( t+ ‘ 𝑅 ) 𝐵 ↔ ∀ 𝑟 ( ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) → 𝐴 𝑟 𝐵 ) ) )