Metamath Proof Explorer


Theorem brcnvtrclfv

Description: Two ways of expressing the transitive closure of the converse of a binary relation. (Contributed by RP, 9-May-2020)

Ref Expression
Assertion brcnvtrclfv ( ( 𝑅𝑈𝐴𝑉𝐵𝑊 ) → ( 𝐴 ( t+ ‘ 𝑅 ) 𝐵 ↔ ∀ 𝑟 ( ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) → 𝐵 𝑟 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 brcnvg ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ( t+ ‘ 𝑅 ) 𝐵𝐵 ( t+ ‘ 𝑅 ) 𝐴 ) )
2 1 3adant1 ( ( 𝑅𝑈𝐴𝑉𝐵𝑊 ) → ( 𝐴 ( t+ ‘ 𝑅 ) 𝐵𝐵 ( t+ ‘ 𝑅 ) 𝐴 ) )
3 brtrclfv ( 𝑅𝑈 → ( 𝐵 ( t+ ‘ 𝑅 ) 𝐴 ↔ ∀ 𝑟 ( ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) → 𝐵 𝑟 𝐴 ) ) )
4 3 3ad2ant1 ( ( 𝑅𝑈𝐴𝑉𝐵𝑊 ) → ( 𝐵 ( t+ ‘ 𝑅 ) 𝐴 ↔ ∀ 𝑟 ( ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) → 𝐵 𝑟 𝐴 ) ) )
5 2 4 bitrd ( ( 𝑅𝑈𝐴𝑉𝐵𝑊 ) → ( 𝐴 ( t+ ‘ 𝑅 ) 𝐵 ↔ ∀ 𝑟 ( ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) → 𝐵 𝑟 𝐴 ) ) )