Description: Two ways of expressing the transitive closure of the converse of a binary relation. (Contributed by RP, 9-May-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | brcnvtrclfv | ⊢ ( ( 𝑅 ∈ 𝑈 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ◡ ( t+ ‘ 𝑅 ) 𝐵 ↔ ∀ 𝑟 ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) → 𝐵 𝑟 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcnvg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ◡ ( t+ ‘ 𝑅 ) 𝐵 ↔ 𝐵 ( t+ ‘ 𝑅 ) 𝐴 ) ) | |
2 | 1 | 3adant1 | ⊢ ( ( 𝑅 ∈ 𝑈 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ◡ ( t+ ‘ 𝑅 ) 𝐵 ↔ 𝐵 ( t+ ‘ 𝑅 ) 𝐴 ) ) |
3 | brtrclfv | ⊢ ( 𝑅 ∈ 𝑈 → ( 𝐵 ( t+ ‘ 𝑅 ) 𝐴 ↔ ∀ 𝑟 ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) → 𝐵 𝑟 𝐴 ) ) ) | |
4 | 3 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ 𝑈 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 ( t+ ‘ 𝑅 ) 𝐴 ↔ ∀ 𝑟 ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) → 𝐵 𝑟 𝐴 ) ) ) |
5 | 2 4 | bitrd | ⊢ ( ( 𝑅 ∈ 𝑈 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ◡ ( t+ ‘ 𝑅 ) 𝐵 ↔ ∀ 𝑟 ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) → 𝐵 𝑟 𝐴 ) ) ) |