Metamath Proof Explorer


Theorem brcnvtrclfv

Description: Two ways of expressing the transitive closure of the converse of a binary relation. (Contributed by RP, 9-May-2020)

Ref Expression
Assertion brcnvtrclfv R U A V B W A t+ R -1 B r R r r r r B r A

Proof

Step Hyp Ref Expression
1 brcnvg A V B W A t+ R -1 B B t+ R A
2 1 3adant1 R U A V B W A t+ R -1 B B t+ R A
3 brtrclfv R U B t+ R A r R r r r r B r A
4 3 3ad2ant1 R U A V B W B t+ R A r R r r r r B r A
5 2 4 bitrd R U A V B W A t+ R -1 B r R r r r r B r A