Metamath Proof Explorer


Theorem brcnvtrclfv

Description: Two ways of expressing the transitive closure of the converse of a binary relation. (Contributed by RP, 9-May-2020)

Ref Expression
Assertion brcnvtrclfv
|- ( ( R e. U /\ A e. V /\ B e. W ) -> ( A `' ( t+ ` R ) B <-> A. r ( ( R C_ r /\ ( r o. r ) C_ r ) -> B r A ) ) )

Proof

Step Hyp Ref Expression
1 brcnvg
 |-  ( ( A e. V /\ B e. W ) -> ( A `' ( t+ ` R ) B <-> B ( t+ ` R ) A ) )
2 1 3adant1
 |-  ( ( R e. U /\ A e. V /\ B e. W ) -> ( A `' ( t+ ` R ) B <-> B ( t+ ` R ) A ) )
3 brtrclfv
 |-  ( R e. U -> ( B ( t+ ` R ) A <-> A. r ( ( R C_ r /\ ( r o. r ) C_ r ) -> B r A ) ) )
4 3 3ad2ant1
 |-  ( ( R e. U /\ A e. V /\ B e. W ) -> ( B ( t+ ` R ) A <-> A. r ( ( R C_ r /\ ( r o. r ) C_ r ) -> B r A ) ) )
5 2 4 bitrd
 |-  ( ( R e. U /\ A e. V /\ B e. W ) -> ( A `' ( t+ ` R ) B <-> A. r ( ( R C_ r /\ ( r o. r ) C_ r ) -> B r A ) ) )