Metamath Proof Explorer


Theorem brtrclfv

Description: Two ways of expressing the transitive closure of a binary relation. (Contributed by RP, 9-May-2020)

Ref Expression
Assertion brtrclfv
|- ( R e. V -> ( A ( t+ ` R ) B <-> A. r ( ( R C_ r /\ ( r o. r ) C_ r ) -> A r B ) ) )

Proof

Step Hyp Ref Expression
1 trclfv
 |-  ( R e. V -> ( t+ ` R ) = |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } )
2 1 breqd
 |-  ( R e. V -> ( A ( t+ ` R ) B <-> A |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } B ) )
3 brintclab
 |-  ( A |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } B <-> A. r ( ( R C_ r /\ ( r o. r ) C_ r ) -> <. A , B >. e. r ) )
4 df-br
 |-  ( A r B <-> <. A , B >. e. r )
5 4 imbi2i
 |-  ( ( ( R C_ r /\ ( r o. r ) C_ r ) -> A r B ) <-> ( ( R C_ r /\ ( r o. r ) C_ r ) -> <. A , B >. e. r ) )
6 5 albii
 |-  ( A. r ( ( R C_ r /\ ( r o. r ) C_ r ) -> A r B ) <-> A. r ( ( R C_ r /\ ( r o. r ) C_ r ) -> <. A , B >. e. r ) )
7 3 6 bitr4i
 |-  ( A |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } B <-> A. r ( ( R C_ r /\ ( r o. r ) C_ r ) -> A r B ) )
8 2 7 bitrdi
 |-  ( R e. V -> ( A ( t+ ` R ) B <-> A. r ( ( R C_ r /\ ( r o. r ) C_ r ) -> A r B ) ) )