Metamath Proof Explorer


Theorem brtrclfv

Description: Two ways of expressing the transitive closure of a binary relation. (Contributed by RP, 9-May-2020)

Ref Expression
Assertion brtrclfv R V A t+ R B r R r r r r A r B

Proof

Step Hyp Ref Expression
1 trclfv R V t+ R = r | R r r r r
2 1 breqd R V A t+ R B A r | R r r r r B
3 brintclab A r | R r r r r B r R r r r r A B r
4 df-br A r B A B r
5 4 imbi2i R r r r r A r B R r r r r A B r
6 5 albii r R r r r r A r B r R r r r r A B r
7 3 6 bitr4i A r | R r r r r B r R r r r r A r B
8 2 7 bitrdi R V A t+ R B r R r r r r A r B