Metamath Proof Explorer


Definition df-trcl

Description: Transitive closure of a relation. This is the smallest superset which has the transitive property. (Contributed by FL, 27-Jun-2011)

Ref Expression
Assertion df-trcl t+ = x V z | x z z z z

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctcl class t+
1 vx setvar x
2 cvv class V
3 vz setvar z
4 1 cv setvar x
5 3 cv setvar z
6 4 5 wss wff x z
7 5 5 ccom class z z
8 7 5 wss wff z z z
9 6 8 wa wff x z z z z
10 9 3 cab class z | x z z z z
11 10 cint class z | x z z z z
12 1 2 11 cmpt class x V z | x z z z z
13 0 12 wceq wff t+ = x V z | x z z z z