Metamath Proof Explorer


Definition df-trcl

Description: Transitive closure of a relation. This is the smallest superset which has the transitive property. (Contributed by FL, 27-Jun-2011)

Ref Expression
Assertion df-trcl t+=xVz|xzzzz

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctcl classt+
1 vx setvarx
2 cvv classV
3 vz setvarz
4 1 cv setvarx
5 3 cv setvarz
6 4 5 wss wffxz
7 5 5 ccom classzz
8 7 5 wss wffzzz
9 6 8 wa wffxzzzz
10 9 3 cab classz|xzzzz
11 10 cint classz|xzzzz
12 1 2 11 cmpt classxVz|xzzzz
13 0 12 wceq wfft+=xVz|xzzzz