Description: Transitive closure of a relation. This is the smallest superset which has the transitive property. (Contributed by FL, 27-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-trcl | |- t+ = ( x e. _V |-> |^| { z | ( x C_ z /\ ( z o. z ) C_ z ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctcl | |- t+ |
|
| 1 | vx | |- x |
|
| 2 | cvv | |- _V |
|
| 3 | vz | |- z |
|
| 4 | 1 | cv | |- x |
| 5 | 3 | cv | |- z |
| 6 | 4 5 | wss | |- x C_ z |
| 7 | 5 5 | ccom | |- ( z o. z ) |
| 8 | 7 5 | wss | |- ( z o. z ) C_ z |
| 9 | 6 8 | wa | |- ( x C_ z /\ ( z o. z ) C_ z ) |
| 10 | 9 3 | cab | |- { z | ( x C_ z /\ ( z o. z ) C_ z ) } |
| 11 | 10 | cint | |- |^| { z | ( x C_ z /\ ( z o. z ) C_ z ) } |
| 12 | 1 2 11 | cmpt | |- ( x e. _V |-> |^| { z | ( x C_ z /\ ( z o. z ) C_ z ) } ) |
| 13 | 0 12 | wceq | |- t+ = ( x e. _V |-> |^| { z | ( x C_ z /\ ( z o. z ) C_ z ) } ) |