| Step | Hyp | Ref | Expression | 
						
							| 0 |  | crtcl |  |-  t* | 
						
							| 1 |  | vx |  |-  x | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vz |  |-  z | 
						
							| 4 |  | cid |  |-  _I | 
						
							| 5 | 1 | cv |  |-  x | 
						
							| 6 | 5 | cdm |  |-  dom x | 
						
							| 7 | 5 | crn |  |-  ran x | 
						
							| 8 | 6 7 | cun |  |-  ( dom x u. ran x ) | 
						
							| 9 | 4 8 | cres |  |-  ( _I |` ( dom x u. ran x ) ) | 
						
							| 10 | 3 | cv |  |-  z | 
						
							| 11 | 9 10 | wss |  |-  ( _I |` ( dom x u. ran x ) ) C_ z | 
						
							| 12 | 5 10 | wss |  |-  x C_ z | 
						
							| 13 | 10 10 | ccom |  |-  ( z o. z ) | 
						
							| 14 | 13 10 | wss |  |-  ( z o. z ) C_ z | 
						
							| 15 | 11 12 14 | w3a |  |-  ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) | 
						
							| 16 | 15 3 | cab |  |-  { z | ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) } | 
						
							| 17 | 16 | cint |  |-  |^| { z | ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) } | 
						
							| 18 | 1 2 17 | cmpt |  |-  ( x e. _V |-> |^| { z | ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) } ) | 
						
							| 19 | 0 18 | wceq |  |-  t* = ( x e. _V |-> |^| { z | ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) } ) |