Step |
Hyp |
Ref |
Expression |
0 |
|
crtcl |
|- t* |
1 |
|
vx |
|- x |
2 |
|
cvv |
|- _V |
3 |
|
vz |
|- z |
4 |
|
cid |
|- _I |
5 |
1
|
cv |
|- x |
6 |
5
|
cdm |
|- dom x |
7 |
5
|
crn |
|- ran x |
8 |
6 7
|
cun |
|- ( dom x u. ran x ) |
9 |
4 8
|
cres |
|- ( _I |` ( dom x u. ran x ) ) |
10 |
3
|
cv |
|- z |
11 |
9 10
|
wss |
|- ( _I |` ( dom x u. ran x ) ) C_ z |
12 |
5 10
|
wss |
|- x C_ z |
13 |
10 10
|
ccom |
|- ( z o. z ) |
14 |
13 10
|
wss |
|- ( z o. z ) C_ z |
15 |
11 12 14
|
w3a |
|- ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) |
16 |
15 3
|
cab |
|- { z | ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) } |
17 |
16
|
cint |
|- |^| { z | ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) } |
18 |
1 2 17
|
cmpt |
|- ( x e. _V |-> |^| { z | ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) } ) |
19 |
0 18
|
wceq |
|- t* = ( x e. _V |-> |^| { z | ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) } ) |