| Step |
Hyp |
Ref |
Expression |
| 0 |
|
crtcl |
⊢ t* |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vz |
⊢ 𝑧 |
| 4 |
|
cid |
⊢ I |
| 5 |
1
|
cv |
⊢ 𝑥 |
| 6 |
5
|
cdm |
⊢ dom 𝑥 |
| 7 |
5
|
crn |
⊢ ran 𝑥 |
| 8 |
6 7
|
cun |
⊢ ( dom 𝑥 ∪ ran 𝑥 ) |
| 9 |
4 8
|
cres |
⊢ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) |
| 10 |
3
|
cv |
⊢ 𝑧 |
| 11 |
9 10
|
wss |
⊢ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 |
| 12 |
5 10
|
wss |
⊢ 𝑥 ⊆ 𝑧 |
| 13 |
10 10
|
ccom |
⊢ ( 𝑧 ∘ 𝑧 ) |
| 14 |
13 10
|
wss |
⊢ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 |
| 15 |
11 12 14
|
w3a |
⊢ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) |
| 16 |
15 3
|
cab |
⊢ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } |
| 17 |
16
|
cint |
⊢ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } |
| 18 |
1 2 17
|
cmpt |
⊢ ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
| 19 |
0 18
|
wceq |
⊢ t* = ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |