Metamath Proof Explorer


Definition df-rtrcl

Description: Reflexive-transitive closure of a relation. This is the smallest superset which is reflexive property over all elements of its domain and range and has the transitive property. (Contributed by FL, 27-Jun-2011)

Ref Expression
Assertion df-rtrcl t* = ( 𝑥 ∈ V ↦ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧𝑥𝑧 ∧ ( 𝑧𝑧 ) ⊆ 𝑧 ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crtcl t*
1 vx 𝑥
2 cvv V
3 vz 𝑧
4 cid I
5 1 cv 𝑥
6 5 cdm dom 𝑥
7 5 crn ran 𝑥
8 6 7 cun ( dom 𝑥 ∪ ran 𝑥 )
9 4 8 cres ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) )
10 3 cv 𝑧
11 9 10 wss ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧
12 5 10 wss 𝑥𝑧
13 10 10 ccom ( 𝑧𝑧 )
14 13 10 wss ( 𝑧𝑧 ) ⊆ 𝑧
15 11 12 14 w3a ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧𝑥𝑧 ∧ ( 𝑧𝑧 ) ⊆ 𝑧 )
16 15 3 cab { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧𝑥𝑧 ∧ ( 𝑧𝑧 ) ⊆ 𝑧 ) }
17 16 cint { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧𝑥𝑧 ∧ ( 𝑧𝑧 ) ⊆ 𝑧 ) }
18 1 2 17 cmpt ( 𝑥 ∈ V ↦ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧𝑥𝑧 ∧ ( 𝑧𝑧 ) ⊆ 𝑧 ) } )
19 0 18 wceq t* = ( 𝑥 ∈ V ↦ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧𝑥𝑧 ∧ ( 𝑧𝑧 ) ⊆ 𝑧 ) } )