Step |
Hyp |
Ref |
Expression |
0 |
|
crtcl |
⊢ t* |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cvv |
⊢ V |
3 |
|
vz |
⊢ 𝑧 |
4 |
|
cid |
⊢ I |
5 |
1
|
cv |
⊢ 𝑥 |
6 |
5
|
cdm |
⊢ dom 𝑥 |
7 |
5
|
crn |
⊢ ran 𝑥 |
8 |
6 7
|
cun |
⊢ ( dom 𝑥 ∪ ran 𝑥 ) |
9 |
4 8
|
cres |
⊢ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) |
10 |
3
|
cv |
⊢ 𝑧 |
11 |
9 10
|
wss |
⊢ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 |
12 |
5 10
|
wss |
⊢ 𝑥 ⊆ 𝑧 |
13 |
10 10
|
ccom |
⊢ ( 𝑧 ∘ 𝑧 ) |
14 |
13 10
|
wss |
⊢ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 |
15 |
11 12 14
|
w3a |
⊢ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) |
16 |
15 3
|
cab |
⊢ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } |
17 |
16
|
cint |
⊢ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } |
18 |
1 2 17
|
cmpt |
⊢ ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
19 |
0 18
|
wceq |
⊢ t* = ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |