Metamath Proof Explorer


Definition df-rtrcl

Description: Reflexive-transitive closure of a relation. This is the smallest superset which is reflexive property over all elements of its domain and range and has the transitive property. (Contributed by FL, 27-Jun-2011)

Ref Expression
Assertion df-rtrcl t*=xVz|Idomxranxzxzzzz

Detailed syntax breakdown

Step Hyp Ref Expression
0 crtcl classt*
1 vx setvarx
2 cvv classV
3 vz setvarz
4 cid classI
5 1 cv setvarx
6 5 cdm classdomx
7 5 crn classranx
8 6 7 cun classdomxranx
9 4 8 cres classIdomxranx
10 3 cv setvarz
11 9 10 wss wffIdomxranxz
12 5 10 wss wffxz
13 10 10 ccom classzz
14 13 10 wss wffzzz
15 11 12 14 w3a wffIdomxranxzxzzzz
16 15 3 cab classz|Idomxranxzxzzzz
17 16 cint classz|Idomxranxzxzzzz
18 1 2 17 cmpt classxVz|Idomxranxzxzzzz
19 0 18 wceq wfft*=xVz|Idomxranxzxzzzz