Metamath Proof Explorer


Definition df-trcl

Description: Transitive closure of a relation. This is the smallest superset which has the transitive property. (Contributed by FL, 27-Jun-2011)

Ref Expression
Assertion df-trcl t+ = ( 𝑥 ∈ V ↦ { 𝑧 ∣ ( 𝑥𝑧 ∧ ( 𝑧𝑧 ) ⊆ 𝑧 ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctcl t+
1 vx 𝑥
2 cvv V
3 vz 𝑧
4 1 cv 𝑥
5 3 cv 𝑧
6 4 5 wss 𝑥𝑧
7 5 5 ccom ( 𝑧𝑧 )
8 7 5 wss ( 𝑧𝑧 ) ⊆ 𝑧
9 6 8 wa ( 𝑥𝑧 ∧ ( 𝑧𝑧 ) ⊆ 𝑧 )
10 9 3 cab { 𝑧 ∣ ( 𝑥𝑧 ∧ ( 𝑧𝑧 ) ⊆ 𝑧 ) }
11 10 cint { 𝑧 ∣ ( 𝑥𝑧 ∧ ( 𝑧𝑧 ) ⊆ 𝑧 ) }
12 1 2 11 cmpt ( 𝑥 ∈ V ↦ { 𝑧 ∣ ( 𝑥𝑧 ∧ ( 𝑧𝑧 ) ⊆ 𝑧 ) } )
13 0 12 wceq t+ = ( 𝑥 ∈ V ↦ { 𝑧 ∣ ( 𝑥𝑧 ∧ ( 𝑧𝑧 ) ⊆ 𝑧 ) } )