Metamath Proof Explorer


Theorem trclfv

Description: The transitive closure of a relation. (Contributed by RP, 28-Apr-2020)

Ref Expression
Assertion trclfv RVt+R=x|Rxxxx

Proof

Step Hyp Ref Expression
1 elex RVRV
2 trclexlem RVRdomR×ranRV
3 trclubg RVx|RxxxxRdomR×ranR
4 2 3 ssexd RVx|RxxxxV
5 trcleq1 r=Rx|rxxxx=x|Rxxxx
6 df-trcl t+=rVx|rxxxx
7 5 6 fvmptg RVx|RxxxxVt+R=x|Rxxxx
8 1 4 7 syl2anc2 RVt+R=x|Rxxxx