Metamath Proof Explorer


Theorem trclexlem

Description: Existence of relation implies existence of union with Cartesian product of domain and range. (Contributed by RP, 5-May-2020)

Ref Expression
Assertion trclexlem RVRdomR×ranRV

Proof

Step Hyp Ref Expression
1 dmexg RVdomRV
2 rnexg RVranRV
3 1 2 xpexd RVdomR×ranRV
4 unexg RVdomR×ranRVRdomR×ranRV
5 3 4 mpdan RVRdomR×ranRV