Metamath Proof Explorer


Theorem trclublem

Description: If a relation exists then the class of transitive relations which are supersets of that relation is not empty. (Contributed by RP, 28-Apr-2020)

Ref Expression
Assertion trclublem R V R dom R × ran R x | R x x x x

Proof

Step Hyp Ref Expression
1 trclexlem R V R dom R × ran R V
2 ssun1 R R dom R × ran R
3 relcnv Rel R -1
4 relssdmrn Rel R -1 R -1 dom R -1 × ran R -1
5 3 4 ax-mp R -1 dom R -1 × ran R -1
6 ssequn1 R -1 dom R -1 × ran R -1 R -1 dom R -1 × ran R -1 = dom R -1 × ran R -1
7 5 6 mpbi R -1 dom R -1 × ran R -1 = dom R -1 × ran R -1
8 cnvun R dom R × ran R -1 = R -1 dom R × ran R -1
9 cnvxp dom R × ran R -1 = ran R × dom R
10 df-rn ran R = dom R -1
11 dfdm4 dom R = ran R -1
12 10 11 xpeq12i ran R × dom R = dom R -1 × ran R -1
13 9 12 eqtri dom R × ran R -1 = dom R -1 × ran R -1
14 13 uneq2i R -1 dom R × ran R -1 = R -1 dom R -1 × ran R -1
15 8 14 eqtri R dom R × ran R -1 = R -1 dom R -1 × ran R -1
16 7 15 13 3eqtr4i R dom R × ran R -1 = dom R × ran R -1
17 16 breqi b R dom R × ran R -1 a b dom R × ran R -1 a
18 vex b V
19 vex a V
20 18 19 brcnv b R dom R × ran R -1 a a R dom R × ran R b
21 18 19 brcnv b dom R × ran R -1 a a dom R × ran R b
22 17 20 21 3bitr3i a R dom R × ran R b a dom R × ran R b
23 16 breqi c R dom R × ran R -1 b c dom R × ran R -1 b
24 vex c V
25 24 18 brcnv c R dom R × ran R -1 b b R dom R × ran R c
26 24 18 brcnv c dom R × ran R -1 b b dom R × ran R c
27 23 25 26 3bitr3i b R dom R × ran R c b dom R × ran R c
28 22 27 anbi12i a R dom R × ran R b b R dom R × ran R c a dom R × ran R b b dom R × ran R c
29 28 biimpi a R dom R × ran R b b R dom R × ran R c a dom R × ran R b b dom R × ran R c
30 29 eximi b a R dom R × ran R b b R dom R × ran R c b a dom R × ran R b b dom R × ran R c
31 30 ssopab2i a c | b a R dom R × ran R b b R dom R × ran R c a c | b a dom R × ran R b b dom R × ran R c
32 df-co R dom R × ran R R dom R × ran R = a c | b a R dom R × ran R b b R dom R × ran R c
33 df-co dom R × ran R dom R × ran R = a c | b a dom R × ran R b b dom R × ran R c
34 31 32 33 3sstr4i R dom R × ran R R dom R × ran R dom R × ran R dom R × ran R
35 xptrrel dom R × ran R dom R × ran R dom R × ran R
36 ssun2 dom R × ran R R dom R × ran R
37 35 36 sstri dom R × ran R dom R × ran R R dom R × ran R
38 34 37 sstri R dom R × ran R R dom R × ran R R dom R × ran R
39 trcleq2lem x = R dom R × ran R R x x x x R R dom R × ran R R dom R × ran R R dom R × ran R R dom R × ran R
40 39 elabg R dom R × ran R V R dom R × ran R x | R x x x x R R dom R × ran R R dom R × ran R R dom R × ran R R dom R × ran R
41 40 biimprd R dom R × ran R V R R dom R × ran R R dom R × ran R R dom R × ran R R dom R × ran R R dom R × ran R x | R x x x x
42 2 38 41 mp2ani R dom R × ran R V R dom R × ran R x | R x x x x
43 1 42 syl R V R dom R × ran R x | R x x x x