Metamath Proof Explorer


Theorem xpeq12i

Description: Equality inference for Cartesian product. (Contributed by FL, 31-Aug-2009)

Ref Expression
Hypotheses xpeq12i.1 A=B
xpeq12i.2 C=D
Assertion xpeq12i A×C=B×D

Proof

Step Hyp Ref Expression
1 xpeq12i.1 A=B
2 xpeq12i.2 C=D
3 xpeq12 A=BC=DA×C=B×D
4 1 2 3 mp2an A×C=B×D