Metamath Proof Explorer


Theorem xpeq1d

Description: Equality deduction for Cartesian product. (Contributed by Jeff Madsen, 17-Jun-2010)

Ref Expression
Hypothesis xpeq1d.1 φA=B
Assertion xpeq1d φA×C=B×C

Proof

Step Hyp Ref Expression
1 xpeq1d.1 φA=B
2 xpeq1 A=BA×C=B×C
3 1 2 syl φA×C=B×C