Metamath Proof Explorer


Theorem xpeq2d

Description: Equality deduction for Cartesian product. (Contributed by Jeff Madsen, 17-Jun-2010)

Ref Expression
Hypothesis xpeq1d.1 φA=B
Assertion xpeq2d φC×A=C×B

Proof

Step Hyp Ref Expression
1 xpeq1d.1 φA=B
2 xpeq2 A=BC×A=C×B
3 1 2 syl φC×A=C×B