Step |
Hyp |
Ref |
Expression |
1 |
|
trclexlem |
|- ( R e. V -> ( R u. ( dom R X. ran R ) ) e. _V ) |
2 |
|
ssun1 |
|- R C_ ( R u. ( dom R X. ran R ) ) |
3 |
|
relcnv |
|- Rel `' R |
4 |
|
relssdmrn |
|- ( Rel `' R -> `' R C_ ( dom `' R X. ran `' R ) ) |
5 |
3 4
|
ax-mp |
|- `' R C_ ( dom `' R X. ran `' R ) |
6 |
|
ssequn1 |
|- ( `' R C_ ( dom `' R X. ran `' R ) <-> ( `' R u. ( dom `' R X. ran `' R ) ) = ( dom `' R X. ran `' R ) ) |
7 |
5 6
|
mpbi |
|- ( `' R u. ( dom `' R X. ran `' R ) ) = ( dom `' R X. ran `' R ) |
8 |
|
cnvun |
|- `' ( R u. ( dom R X. ran R ) ) = ( `' R u. `' ( dom R X. ran R ) ) |
9 |
|
cnvxp |
|- `' ( dom R X. ran R ) = ( ran R X. dom R ) |
10 |
|
df-rn |
|- ran R = dom `' R |
11 |
|
dfdm4 |
|- dom R = ran `' R |
12 |
10 11
|
xpeq12i |
|- ( ran R X. dom R ) = ( dom `' R X. ran `' R ) |
13 |
9 12
|
eqtri |
|- `' ( dom R X. ran R ) = ( dom `' R X. ran `' R ) |
14 |
13
|
uneq2i |
|- ( `' R u. `' ( dom R X. ran R ) ) = ( `' R u. ( dom `' R X. ran `' R ) ) |
15 |
8 14
|
eqtri |
|- `' ( R u. ( dom R X. ran R ) ) = ( `' R u. ( dom `' R X. ran `' R ) ) |
16 |
7 15 13
|
3eqtr4i |
|- `' ( R u. ( dom R X. ran R ) ) = `' ( dom R X. ran R ) |
17 |
16
|
breqi |
|- ( b `' ( R u. ( dom R X. ran R ) ) a <-> b `' ( dom R X. ran R ) a ) |
18 |
|
vex |
|- b e. _V |
19 |
|
vex |
|- a e. _V |
20 |
18 19
|
brcnv |
|- ( b `' ( R u. ( dom R X. ran R ) ) a <-> a ( R u. ( dom R X. ran R ) ) b ) |
21 |
18 19
|
brcnv |
|- ( b `' ( dom R X. ran R ) a <-> a ( dom R X. ran R ) b ) |
22 |
17 20 21
|
3bitr3i |
|- ( a ( R u. ( dom R X. ran R ) ) b <-> a ( dom R X. ran R ) b ) |
23 |
16
|
breqi |
|- ( c `' ( R u. ( dom R X. ran R ) ) b <-> c `' ( dom R X. ran R ) b ) |
24 |
|
vex |
|- c e. _V |
25 |
24 18
|
brcnv |
|- ( c `' ( R u. ( dom R X. ran R ) ) b <-> b ( R u. ( dom R X. ran R ) ) c ) |
26 |
24 18
|
brcnv |
|- ( c `' ( dom R X. ran R ) b <-> b ( dom R X. ran R ) c ) |
27 |
23 25 26
|
3bitr3i |
|- ( b ( R u. ( dom R X. ran R ) ) c <-> b ( dom R X. ran R ) c ) |
28 |
22 27
|
anbi12i |
|- ( ( a ( R u. ( dom R X. ran R ) ) b /\ b ( R u. ( dom R X. ran R ) ) c ) <-> ( a ( dom R X. ran R ) b /\ b ( dom R X. ran R ) c ) ) |
29 |
28
|
biimpi |
|- ( ( a ( R u. ( dom R X. ran R ) ) b /\ b ( R u. ( dom R X. ran R ) ) c ) -> ( a ( dom R X. ran R ) b /\ b ( dom R X. ran R ) c ) ) |
30 |
29
|
eximi |
|- ( E. b ( a ( R u. ( dom R X. ran R ) ) b /\ b ( R u. ( dom R X. ran R ) ) c ) -> E. b ( a ( dom R X. ran R ) b /\ b ( dom R X. ran R ) c ) ) |
31 |
30
|
ssopab2i |
|- { <. a , c >. | E. b ( a ( R u. ( dom R X. ran R ) ) b /\ b ( R u. ( dom R X. ran R ) ) c ) } C_ { <. a , c >. | E. b ( a ( dom R X. ran R ) b /\ b ( dom R X. ran R ) c ) } |
32 |
|
df-co |
|- ( ( R u. ( dom R X. ran R ) ) o. ( R u. ( dom R X. ran R ) ) ) = { <. a , c >. | E. b ( a ( R u. ( dom R X. ran R ) ) b /\ b ( R u. ( dom R X. ran R ) ) c ) } |
33 |
|
df-co |
|- ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) = { <. a , c >. | E. b ( a ( dom R X. ran R ) b /\ b ( dom R X. ran R ) c ) } |
34 |
31 32 33
|
3sstr4i |
|- ( ( R u. ( dom R X. ran R ) ) o. ( R u. ( dom R X. ran R ) ) ) C_ ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) |
35 |
|
xptrrel |
|- ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) C_ ( dom R X. ran R ) |
36 |
|
ssun2 |
|- ( dom R X. ran R ) C_ ( R u. ( dom R X. ran R ) ) |
37 |
35 36
|
sstri |
|- ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) C_ ( R u. ( dom R X. ran R ) ) |
38 |
34 37
|
sstri |
|- ( ( R u. ( dom R X. ran R ) ) o. ( R u. ( dom R X. ran R ) ) ) C_ ( R u. ( dom R X. ran R ) ) |
39 |
|
trcleq2lem |
|- ( x = ( R u. ( dom R X. ran R ) ) -> ( ( R C_ x /\ ( x o. x ) C_ x ) <-> ( R C_ ( R u. ( dom R X. ran R ) ) /\ ( ( R u. ( dom R X. ran R ) ) o. ( R u. ( dom R X. ran R ) ) ) C_ ( R u. ( dom R X. ran R ) ) ) ) ) |
40 |
39
|
elabg |
|- ( ( R u. ( dom R X. ran R ) ) e. _V -> ( ( R u. ( dom R X. ran R ) ) e. { x | ( R C_ x /\ ( x o. x ) C_ x ) } <-> ( R C_ ( R u. ( dom R X. ran R ) ) /\ ( ( R u. ( dom R X. ran R ) ) o. ( R u. ( dom R X. ran R ) ) ) C_ ( R u. ( dom R X. ran R ) ) ) ) ) |
41 |
40
|
biimprd |
|- ( ( R u. ( dom R X. ran R ) ) e. _V -> ( ( R C_ ( R u. ( dom R X. ran R ) ) /\ ( ( R u. ( dom R X. ran R ) ) o. ( R u. ( dom R X. ran R ) ) ) C_ ( R u. ( dom R X. ran R ) ) ) -> ( R u. ( dom R X. ran R ) ) e. { x | ( R C_ x /\ ( x o. x ) C_ x ) } ) ) |
42 |
2 38 41
|
mp2ani |
|- ( ( R u. ( dom R X. ran R ) ) e. _V -> ( R u. ( dom R X. ran R ) ) e. { x | ( R C_ x /\ ( x o. x ) C_ x ) } ) |
43 |
1 42
|
syl |
|- ( R e. V -> ( R u. ( dom R X. ran R ) ) e. { x | ( R C_ x /\ ( x o. x ) C_ x ) } ) |