Description: Equality implies bijection. (Contributed by RP, 5-May-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | trcleq2lem | |- ( A = B -> ( ( R C_ A /\ ( A o. A ) C_ A ) <-> ( R C_ B /\ ( B o. B ) C_ B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 | |- ( A = B -> ( R C_ A <-> R C_ B ) ) |
|
2 | id | |- ( A = B -> A = B ) |
|
3 | 2 2 | coeq12d | |- ( A = B -> ( A o. A ) = ( B o. B ) ) |
4 | 3 2 | sseq12d | |- ( A = B -> ( ( A o. A ) C_ A <-> ( B o. B ) C_ B ) ) |
5 | 1 4 | anbi12d | |- ( A = B -> ( ( R C_ A /\ ( A o. A ) C_ A ) <-> ( R C_ B /\ ( B o. B ) C_ B ) ) ) |