Metamath Proof Explorer


Theorem cvbtrcl

Description: Change of bound variable in class of all transitive relations which are supersets of a relation. (Contributed by RP, 5-May-2020)

Ref Expression
Assertion cvbtrcl
|- { x | ( R C_ x /\ ( x o. x ) C_ x ) } = { y | ( R C_ y /\ ( y o. y ) C_ y ) }

Proof

Step Hyp Ref Expression
1 trcleq2lem
 |-  ( x = y -> ( ( R C_ x /\ ( x o. x ) C_ x ) <-> ( R C_ y /\ ( y o. y ) C_ y ) ) )
2 1 cbvabv
 |-  { x | ( R C_ x /\ ( x o. x ) C_ x ) } = { y | ( R C_ y /\ ( y o. y ) C_ y ) }