Description: Equality implies bijection. (Contributed by RP, 9-May-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | trcleq12lem | |- ( ( R = S /\ A = B ) -> ( ( R C_ A /\ ( A o. A ) C_ A ) <-> ( S C_ B /\ ( B o. B ) C_ B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cleq1lem | |- ( R = S -> ( ( R C_ A /\ ( A o. A ) C_ A ) <-> ( S C_ A /\ ( A o. A ) C_ A ) ) ) |
|
2 | trcleq2lem | |- ( A = B -> ( ( S C_ A /\ ( A o. A ) C_ A ) <-> ( S C_ B /\ ( B o. B ) C_ B ) ) ) |
|
3 | 1 2 | sylan9bb | |- ( ( R = S /\ A = B ) -> ( ( R C_ A /\ ( A o. A ) C_ A ) <-> ( S C_ B /\ ( B o. B ) C_ B ) ) ) |