Description: Existence of relation implies existence of union with Cartesian product of domain and range. (Contributed by RP, 5-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trclexlem | |- ( R e. V -> ( R u. ( dom R X. ran R ) ) e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexg | |- ( R e. V -> dom R e. _V ) |
|
| 2 | rnexg | |- ( R e. V -> ran R e. _V ) |
|
| 3 | 1 2 | xpexd | |- ( R e. V -> ( dom R X. ran R ) e. _V ) |
| 4 | unexg | |- ( ( R e. V /\ ( dom R X. ran R ) e. _V ) -> ( R u. ( dom R X. ran R ) ) e. _V ) |
|
| 5 | 3 4 | mpdan | |- ( R e. V -> ( R u. ( dom R X. ran R ) ) e. _V ) |