Metamath Proof Explorer


Theorem xpexd

Description: The Cartesian product of two sets is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses xpexd.1
|- ( ph -> A e. V )
xpexd.2
|- ( ph -> B e. W )
Assertion xpexd
|- ( ph -> ( A X. B ) e. _V )

Proof

Step Hyp Ref Expression
1 xpexd.1
 |-  ( ph -> A e. V )
2 xpexd.2
 |-  ( ph -> B e. W )
3 xpexg
 |-  ( ( A e. V /\ B e. W ) -> ( A X. B ) e. _V )
4 1 2 3 syl2anc
 |-  ( ph -> ( A X. B ) e. _V )