Metamath Proof Explorer


Theorem trcleq12lem

Description: Equality implies bijection. (Contributed by RP, 9-May-2020)

Ref Expression
Assertion trcleq12lem ( ( 𝑅 = 𝑆𝐴 = 𝐵 ) → ( ( 𝑅𝐴 ∧ ( 𝐴𝐴 ) ⊆ 𝐴 ) ↔ ( 𝑆𝐵 ∧ ( 𝐵𝐵 ) ⊆ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 cleq1lem ( 𝑅 = 𝑆 → ( ( 𝑅𝐴 ∧ ( 𝐴𝐴 ) ⊆ 𝐴 ) ↔ ( 𝑆𝐴 ∧ ( 𝐴𝐴 ) ⊆ 𝐴 ) ) )
2 trcleq2lem ( 𝐴 = 𝐵 → ( ( 𝑆𝐴 ∧ ( 𝐴𝐴 ) ⊆ 𝐴 ) ↔ ( 𝑆𝐵 ∧ ( 𝐵𝐵 ) ⊆ 𝐵 ) ) )
3 1 2 sylan9bb ( ( 𝑅 = 𝑆𝐴 = 𝐵 ) → ( ( 𝑅𝐴 ∧ ( 𝐴𝐴 ) ⊆ 𝐴 ) ↔ ( 𝑆𝐵 ∧ ( 𝐵𝐵 ) ⊆ 𝐵 ) ) )