Metamath Proof Explorer


Theorem trcleq12lem

Description: Equality implies bijection. (Contributed by RP, 9-May-2020)

Ref Expression
Assertion trcleq12lem R = S A = B R A A A A S B B B B

Proof

Step Hyp Ref Expression
1 cleq1lem R = S R A A A A S A A A A
2 trcleq2lem A = B S A A A A S B B B B
3 1 2 sylan9bb R = S A = B R A A A A S B B B B