Metamath Proof Explorer


Theorem trclubi

Description: The Cartesian product of the domain and range of a relation is an upper bound for its transitive closure. (Contributed by RP, 2-Jan-2020) (Revised by RP, 28-Apr-2020) (Revised by AV, 26-Mar-2021)

Ref Expression
Hypotheses trclubi.rel
|- Rel R
trclubi.rex
|- R e. _V
Assertion trclubi
|- |^| { s | ( R C_ s /\ ( s o. s ) C_ s ) } C_ ( dom R X. ran R )

Proof

Step Hyp Ref Expression
1 trclubi.rel
 |-  Rel R
2 trclubi.rex
 |-  R e. _V
3 relssdmrn
 |-  ( Rel R -> R C_ ( dom R X. ran R ) )
4 ssequn1
 |-  ( R C_ ( dom R X. ran R ) <-> ( R u. ( dom R X. ran R ) ) = ( dom R X. ran R ) )
5 3 4 sylib
 |-  ( Rel R -> ( R u. ( dom R X. ran R ) ) = ( dom R X. ran R ) )
6 1 5 ax-mp
 |-  ( R u. ( dom R X. ran R ) ) = ( dom R X. ran R )
7 trclublem
 |-  ( R e. _V -> ( R u. ( dom R X. ran R ) ) e. { s | ( R C_ s /\ ( s o. s ) C_ s ) } )
8 2 7 ax-mp
 |-  ( R u. ( dom R X. ran R ) ) e. { s | ( R C_ s /\ ( s o. s ) C_ s ) }
9 6 8 eqeltrri
 |-  ( dom R X. ran R ) e. { s | ( R C_ s /\ ( s o. s ) C_ s ) }
10 intss1
 |-  ( ( dom R X. ran R ) e. { s | ( R C_ s /\ ( s o. s ) C_ s ) } -> |^| { s | ( R C_ s /\ ( s o. s ) C_ s ) } C_ ( dom R X. ran R ) )
11 9 10 ax-mp
 |-  |^| { s | ( R C_ s /\ ( s o. s ) C_ s ) } C_ ( dom R X. ran R )