Step |
Hyp |
Ref |
Expression |
1 |
|
trclubi.rel |
|- Rel R |
2 |
|
trclubi.rex |
|- R e. _V |
3 |
|
relssdmrn |
|- ( Rel R -> R C_ ( dom R X. ran R ) ) |
4 |
|
ssequn1 |
|- ( R C_ ( dom R X. ran R ) <-> ( R u. ( dom R X. ran R ) ) = ( dom R X. ran R ) ) |
5 |
3 4
|
sylib |
|- ( Rel R -> ( R u. ( dom R X. ran R ) ) = ( dom R X. ran R ) ) |
6 |
1 5
|
ax-mp |
|- ( R u. ( dom R X. ran R ) ) = ( dom R X. ran R ) |
7 |
|
trclublem |
|- ( R e. _V -> ( R u. ( dom R X. ran R ) ) e. { s | ( R C_ s /\ ( s o. s ) C_ s ) } ) |
8 |
2 7
|
ax-mp |
|- ( R u. ( dom R X. ran R ) ) e. { s | ( R C_ s /\ ( s o. s ) C_ s ) } |
9 |
6 8
|
eqeltrri |
|- ( dom R X. ran R ) e. { s | ( R C_ s /\ ( s o. s ) C_ s ) } |
10 |
|
intss1 |
|- ( ( dom R X. ran R ) e. { s | ( R C_ s /\ ( s o. s ) C_ s ) } -> |^| { s | ( R C_ s /\ ( s o. s ) C_ s ) } C_ ( dom R X. ran R ) ) |
11 |
9 10
|
ax-mp |
|- |^| { s | ( R C_ s /\ ( s o. s ) C_ s ) } C_ ( dom R X. ran R ) |