| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trclubi.rel |
⊢ Rel 𝑅 |
| 2 |
|
trclubi.rex |
⊢ 𝑅 ∈ V |
| 3 |
|
relssdmrn |
⊢ ( Rel 𝑅 → 𝑅 ⊆ ( dom 𝑅 × ran 𝑅 ) ) |
| 4 |
|
ssequn1 |
⊢ ( 𝑅 ⊆ ( dom 𝑅 × ran 𝑅 ) ↔ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) = ( dom 𝑅 × ran 𝑅 ) ) |
| 5 |
3 4
|
sylib |
⊢ ( Rel 𝑅 → ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) = ( dom 𝑅 × ran 𝑅 ) ) |
| 6 |
1 5
|
ax-mp |
⊢ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) = ( dom 𝑅 × ran 𝑅 ) |
| 7 |
|
trclublem |
⊢ ( 𝑅 ∈ V → ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ∈ { 𝑠 ∣ ( 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) } ) |
| 8 |
2 7
|
ax-mp |
⊢ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ∈ { 𝑠 ∣ ( 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) } |
| 9 |
6 8
|
eqeltrri |
⊢ ( dom 𝑅 × ran 𝑅 ) ∈ { 𝑠 ∣ ( 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) } |
| 10 |
|
intss1 |
⊢ ( ( dom 𝑅 × ran 𝑅 ) ∈ { 𝑠 ∣ ( 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) } → ∩ { 𝑠 ∣ ( 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) } ⊆ ( dom 𝑅 × ran 𝑅 ) ) |
| 11 |
9 10
|
ax-mp |
⊢ ∩ { 𝑠 ∣ ( 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) } ⊆ ( dom 𝑅 × ran 𝑅 ) |