Step |
Hyp |
Ref |
Expression |
1 |
|
trclexlem |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ∈ V ) |
2 |
|
ssun1 |
⊢ 𝑅 ⊆ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) |
3 |
|
relcnv |
⊢ Rel ◡ 𝑅 |
4 |
|
relssdmrn |
⊢ ( Rel ◡ 𝑅 → ◡ 𝑅 ⊆ ( dom ◡ 𝑅 × ran ◡ 𝑅 ) ) |
5 |
3 4
|
ax-mp |
⊢ ◡ 𝑅 ⊆ ( dom ◡ 𝑅 × ran ◡ 𝑅 ) |
6 |
|
ssequn1 |
⊢ ( ◡ 𝑅 ⊆ ( dom ◡ 𝑅 × ran ◡ 𝑅 ) ↔ ( ◡ 𝑅 ∪ ( dom ◡ 𝑅 × ran ◡ 𝑅 ) ) = ( dom ◡ 𝑅 × ran ◡ 𝑅 ) ) |
7 |
5 6
|
mpbi |
⊢ ( ◡ 𝑅 ∪ ( dom ◡ 𝑅 × ran ◡ 𝑅 ) ) = ( dom ◡ 𝑅 × ran ◡ 𝑅 ) |
8 |
|
cnvun |
⊢ ◡ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) = ( ◡ 𝑅 ∪ ◡ ( dom 𝑅 × ran 𝑅 ) ) |
9 |
|
cnvxp |
⊢ ◡ ( dom 𝑅 × ran 𝑅 ) = ( ran 𝑅 × dom 𝑅 ) |
10 |
|
df-rn |
⊢ ran 𝑅 = dom ◡ 𝑅 |
11 |
|
dfdm4 |
⊢ dom 𝑅 = ran ◡ 𝑅 |
12 |
10 11
|
xpeq12i |
⊢ ( ran 𝑅 × dom 𝑅 ) = ( dom ◡ 𝑅 × ran ◡ 𝑅 ) |
13 |
9 12
|
eqtri |
⊢ ◡ ( dom 𝑅 × ran 𝑅 ) = ( dom ◡ 𝑅 × ran ◡ 𝑅 ) |
14 |
13
|
uneq2i |
⊢ ( ◡ 𝑅 ∪ ◡ ( dom 𝑅 × ran 𝑅 ) ) = ( ◡ 𝑅 ∪ ( dom ◡ 𝑅 × ran ◡ 𝑅 ) ) |
15 |
8 14
|
eqtri |
⊢ ◡ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) = ( ◡ 𝑅 ∪ ( dom ◡ 𝑅 × ran ◡ 𝑅 ) ) |
16 |
7 15 13
|
3eqtr4i |
⊢ ◡ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) = ◡ ( dom 𝑅 × ran 𝑅 ) |
17 |
16
|
breqi |
⊢ ( 𝑏 ◡ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) 𝑎 ↔ 𝑏 ◡ ( dom 𝑅 × ran 𝑅 ) 𝑎 ) |
18 |
|
vex |
⊢ 𝑏 ∈ V |
19 |
|
vex |
⊢ 𝑎 ∈ V |
20 |
18 19
|
brcnv |
⊢ ( 𝑏 ◡ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) 𝑎 ↔ 𝑎 ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) 𝑏 ) |
21 |
18 19
|
brcnv |
⊢ ( 𝑏 ◡ ( dom 𝑅 × ran 𝑅 ) 𝑎 ↔ 𝑎 ( dom 𝑅 × ran 𝑅 ) 𝑏 ) |
22 |
17 20 21
|
3bitr3i |
⊢ ( 𝑎 ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) 𝑏 ↔ 𝑎 ( dom 𝑅 × ran 𝑅 ) 𝑏 ) |
23 |
16
|
breqi |
⊢ ( 𝑐 ◡ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) 𝑏 ↔ 𝑐 ◡ ( dom 𝑅 × ran 𝑅 ) 𝑏 ) |
24 |
|
vex |
⊢ 𝑐 ∈ V |
25 |
24 18
|
brcnv |
⊢ ( 𝑐 ◡ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) 𝑏 ↔ 𝑏 ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) 𝑐 ) |
26 |
24 18
|
brcnv |
⊢ ( 𝑐 ◡ ( dom 𝑅 × ran 𝑅 ) 𝑏 ↔ 𝑏 ( dom 𝑅 × ran 𝑅 ) 𝑐 ) |
27 |
23 25 26
|
3bitr3i |
⊢ ( 𝑏 ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) 𝑐 ↔ 𝑏 ( dom 𝑅 × ran 𝑅 ) 𝑐 ) |
28 |
22 27
|
anbi12i |
⊢ ( ( 𝑎 ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) 𝑏 ∧ 𝑏 ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) 𝑐 ) ↔ ( 𝑎 ( dom 𝑅 × ran 𝑅 ) 𝑏 ∧ 𝑏 ( dom 𝑅 × ran 𝑅 ) 𝑐 ) ) |
29 |
28
|
biimpi |
⊢ ( ( 𝑎 ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) 𝑏 ∧ 𝑏 ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) 𝑐 ) → ( 𝑎 ( dom 𝑅 × ran 𝑅 ) 𝑏 ∧ 𝑏 ( dom 𝑅 × ran 𝑅 ) 𝑐 ) ) |
30 |
29
|
eximi |
⊢ ( ∃ 𝑏 ( 𝑎 ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) 𝑏 ∧ 𝑏 ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) 𝑐 ) → ∃ 𝑏 ( 𝑎 ( dom 𝑅 × ran 𝑅 ) 𝑏 ∧ 𝑏 ( dom 𝑅 × ran 𝑅 ) 𝑐 ) ) |
31 |
30
|
ssopab2i |
⊢ { 〈 𝑎 , 𝑐 〉 ∣ ∃ 𝑏 ( 𝑎 ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) 𝑏 ∧ 𝑏 ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) 𝑐 ) } ⊆ { 〈 𝑎 , 𝑐 〉 ∣ ∃ 𝑏 ( 𝑎 ( dom 𝑅 × ran 𝑅 ) 𝑏 ∧ 𝑏 ( dom 𝑅 × ran 𝑅 ) 𝑐 ) } |
32 |
|
df-co |
⊢ ( ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ∘ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ) = { 〈 𝑎 , 𝑐 〉 ∣ ∃ 𝑏 ( 𝑎 ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) 𝑏 ∧ 𝑏 ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) 𝑐 ) } |
33 |
|
df-co |
⊢ ( ( dom 𝑅 × ran 𝑅 ) ∘ ( dom 𝑅 × ran 𝑅 ) ) = { 〈 𝑎 , 𝑐 〉 ∣ ∃ 𝑏 ( 𝑎 ( dom 𝑅 × ran 𝑅 ) 𝑏 ∧ 𝑏 ( dom 𝑅 × ran 𝑅 ) 𝑐 ) } |
34 |
31 32 33
|
3sstr4i |
⊢ ( ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ∘ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ) ⊆ ( ( dom 𝑅 × ran 𝑅 ) ∘ ( dom 𝑅 × ran 𝑅 ) ) |
35 |
|
xptrrel |
⊢ ( ( dom 𝑅 × ran 𝑅 ) ∘ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( dom 𝑅 × ran 𝑅 ) |
36 |
|
ssun2 |
⊢ ( dom 𝑅 × ran 𝑅 ) ⊆ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) |
37 |
35 36
|
sstri |
⊢ ( ( dom 𝑅 × ran 𝑅 ) ∘ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) |
38 |
34 37
|
sstri |
⊢ ( ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ∘ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ) ⊆ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) |
39 |
|
trcleq2lem |
⊢ ( 𝑥 = ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) → ( ( 𝑅 ⊆ 𝑥 ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑥 ) ↔ ( 𝑅 ⊆ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ∧ ( ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ∘ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ) ⊆ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ) ) ) |
40 |
39
|
elabg |
⊢ ( ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ∈ V → ( ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ∈ { 𝑥 ∣ ( 𝑅 ⊆ 𝑥 ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑥 ) } ↔ ( 𝑅 ⊆ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ∧ ( ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ∘ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ) ⊆ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ) ) ) |
41 |
40
|
biimprd |
⊢ ( ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ∈ V → ( ( 𝑅 ⊆ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ∧ ( ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ∘ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ) ⊆ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ) → ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ∈ { 𝑥 ∣ ( 𝑅 ⊆ 𝑥 ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑥 ) } ) ) |
42 |
2 38 41
|
mp2ani |
⊢ ( ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ∈ V → ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ∈ { 𝑥 ∣ ( 𝑅 ⊆ 𝑥 ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑥 ) } ) |
43 |
1 42
|
syl |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ∈ { 𝑥 ∣ ( 𝑅 ⊆ 𝑥 ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑥 ) } ) |