Metamath Proof Explorer


Theorem ssopab2i

Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 5-Apr-1995)

Ref Expression
Hypothesis ssopab2i.1 ( 𝜑𝜓 )
Assertion ssopab2i { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 }

Proof

Step Hyp Ref Expression
1 ssopab2i.1 ( 𝜑𝜓 )
2 ssopab2 ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } )
3 1 ax-gen 𝑦 ( 𝜑𝜓 )
4 2 3 mpg { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 }