Metamath Proof Explorer


Theorem ssopab2i

Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 5-Apr-1995)

Ref Expression
Hypothesis ssopab2i.1
|- ( ph -> ps )
Assertion ssopab2i
|- { <. x , y >. | ph } C_ { <. x , y >. | ps }

Proof

Step Hyp Ref Expression
1 ssopab2i.1
 |-  ( ph -> ps )
2 ssopab2
 |-  ( A. x A. y ( ph -> ps ) -> { <. x , y >. | ph } C_ { <. x , y >. | ps } )
3 1 ax-gen
 |-  A. y ( ph -> ps )
4 2 3 mpg
 |-  { <. x , y >. | ph } C_ { <. x , y >. | ps }