Metamath Proof Explorer


Theorem ssopab2dv

Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 19-Jan-2014) (Revised by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypothesis ssopab2dv.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion ssopab2dv ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜒 } )

Proof

Step Hyp Ref Expression
1 ssopab2dv.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 alrimivv ( 𝜑 → ∀ 𝑥𝑦 ( 𝜓𝜒 ) )
3 ssopab2 ( ∀ 𝑥𝑦 ( 𝜓𝜒 ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜒 } )
4 2 3 syl ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜒 } )