Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 19-Jan-2014) (Revised by Mario Carneiro, 24-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ssopab2dv.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
Assertion | ssopab2dv | ⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ 𝜒 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssopab2dv.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
2 | 1 | alrimivv | ⊢ ( 𝜑 → ∀ 𝑥 ∀ 𝑦 ( 𝜓 → 𝜒 ) ) |
3 | ssopab2 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜓 → 𝜒 ) → { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ 𝜒 } ) | |
4 | 2 3 | syl | ⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ 𝜒 } ) |