| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inss1 |
⊢ ( dom ( 𝐴 × 𝐵 ) ∩ ran ( 𝐴 × 𝐵 ) ) ⊆ dom ( 𝐴 × 𝐵 ) |
| 2 |
|
dmxpss |
⊢ dom ( 𝐴 × 𝐵 ) ⊆ 𝐴 |
| 3 |
1 2
|
sstri |
⊢ ( dom ( 𝐴 × 𝐵 ) ∩ ran ( 𝐴 × 𝐵 ) ) ⊆ 𝐴 |
| 4 |
|
inss2 |
⊢ ( dom ( 𝐴 × 𝐵 ) ∩ ran ( 𝐴 × 𝐵 ) ) ⊆ ran ( 𝐴 × 𝐵 ) |
| 5 |
|
rnxpss |
⊢ ran ( 𝐴 × 𝐵 ) ⊆ 𝐵 |
| 6 |
4 5
|
sstri |
⊢ ( dom ( 𝐴 × 𝐵 ) ∩ ran ( 𝐴 × 𝐵 ) ) ⊆ 𝐵 |
| 7 |
3 6
|
ssini |
⊢ ( dom ( 𝐴 × 𝐵 ) ∩ ran ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐴 ∩ 𝐵 ) |
| 8 |
|
eqimss |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐴 ∩ 𝐵 ) ⊆ ∅ ) |
| 9 |
7 8
|
sstrid |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( dom ( 𝐴 × 𝐵 ) ∩ ran ( 𝐴 × 𝐵 ) ) ⊆ ∅ ) |
| 10 |
|
ss0 |
⊢ ( ( dom ( 𝐴 × 𝐵 ) ∩ ran ( 𝐴 × 𝐵 ) ) ⊆ ∅ → ( dom ( 𝐴 × 𝐵 ) ∩ ran ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 11 |
9 10
|
syl |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( dom ( 𝐴 × 𝐵 ) ∩ ran ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 12 |
11
|
coemptyd |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 × 𝐵 ) ∘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 13 |
|
0ss |
⊢ ∅ ⊆ ( 𝐴 × 𝐵 ) |
| 14 |
12 13
|
eqsstrdi |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 × 𝐵 ) ∘ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐴 × 𝐵 ) ) |
| 15 |
|
neqne |
⊢ ( ¬ ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐴 ∩ 𝐵 ) ≠ ∅ ) |
| 16 |
15
|
xpcoidgend |
⊢ ( ¬ ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 × 𝐵 ) ∘ ( 𝐴 × 𝐵 ) ) = ( 𝐴 × 𝐵 ) ) |
| 17 |
|
ssid |
⊢ ( 𝐴 × 𝐵 ) ⊆ ( 𝐴 × 𝐵 ) |
| 18 |
16 17
|
eqsstrdi |
⊢ ( ¬ ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 × 𝐵 ) ∘ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐴 × 𝐵 ) ) |
| 19 |
14 18
|
pm2.61i |
⊢ ( ( 𝐴 × 𝐵 ) ∘ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐴 × 𝐵 ) |