Description: The union with the Cartesian product of its domain and range is an upper bound for a set's transitive closure. (Contributed by RP, 3-Jan-2020) (Revised by RP, 28-Apr-2020) (Revised by AV, 26-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | trclubgi.rex | |- R e. _V |
|
Assertion | trclubgi | |- |^| { s | ( R C_ s /\ ( s o. s ) C_ s ) } C_ ( R u. ( dom R X. ran R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trclubgi.rex | |- R e. _V |
|
2 | trclublem | |- ( R e. _V -> ( R u. ( dom R X. ran R ) ) e. { s | ( R C_ s /\ ( s o. s ) C_ s ) } ) |
|
3 | intss1 | |- ( ( R u. ( dom R X. ran R ) ) e. { s | ( R C_ s /\ ( s o. s ) C_ s ) } -> |^| { s | ( R C_ s /\ ( s o. s ) C_ s ) } C_ ( R u. ( dom R X. ran R ) ) ) |
|
4 | 1 2 3 | mp2b | |- |^| { s | ( R C_ s /\ ( s o. s ) C_ s ) } C_ ( R u. ( dom R X. ran R ) ) |