Metamath Proof Explorer


Theorem trclubgi

Description: The union with the Cartesian product of its domain and range is an upper bound for a set's transitive closure. (Contributed by RP, 3-Jan-2020) (Revised by RP, 28-Apr-2020) (Revised by AV, 26-Mar-2021)

Ref Expression
Hypothesis trclubgi.rex
|- R e. _V
Assertion trclubgi
|- |^| { s | ( R C_ s /\ ( s o. s ) C_ s ) } C_ ( R u. ( dom R X. ran R ) )

Proof

Step Hyp Ref Expression
1 trclubgi.rex
 |-  R e. _V
2 trclublem
 |-  ( R e. _V -> ( R u. ( dom R X. ran R ) ) e. { s | ( R C_ s /\ ( s o. s ) C_ s ) } )
3 intss1
 |-  ( ( R u. ( dom R X. ran R ) ) e. { s | ( R C_ s /\ ( s o. s ) C_ s ) } -> |^| { s | ( R C_ s /\ ( s o. s ) C_ s ) } C_ ( R u. ( dom R X. ran R ) ) )
4 1 2 3 mp2b
 |-  |^| { s | ( R C_ s /\ ( s o. s ) C_ s ) } C_ ( R u. ( dom R X. ran R ) )