Metamath Proof Explorer


Theorem trclub

Description: The Cartesian product of the domain and range of a relation is an upper bound for its transitive closure. (Contributed by RP, 17-May-2020)

Ref Expression
Assertion trclub
|- ( ( R e. V /\ Rel R ) -> |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } C_ ( dom R X. ran R ) )

Proof

Step Hyp Ref Expression
1 relssdmrn
 |-  ( Rel R -> R C_ ( dom R X. ran R ) )
2 ssequn1
 |-  ( R C_ ( dom R X. ran R ) <-> ( R u. ( dom R X. ran R ) ) = ( dom R X. ran R ) )
3 1 2 sylib
 |-  ( Rel R -> ( R u. ( dom R X. ran R ) ) = ( dom R X. ran R ) )
4 trclublem
 |-  ( R e. V -> ( R u. ( dom R X. ran R ) ) e. { r | ( R C_ r /\ ( r o. r ) C_ r ) } )
5 eleq1
 |-  ( ( R u. ( dom R X. ran R ) ) = ( dom R X. ran R ) -> ( ( R u. ( dom R X. ran R ) ) e. { r | ( R C_ r /\ ( r o. r ) C_ r ) } <-> ( dom R X. ran R ) e. { r | ( R C_ r /\ ( r o. r ) C_ r ) } ) )
6 5 biimpa
 |-  ( ( ( R u. ( dom R X. ran R ) ) = ( dom R X. ran R ) /\ ( R u. ( dom R X. ran R ) ) e. { r | ( R C_ r /\ ( r o. r ) C_ r ) } ) -> ( dom R X. ran R ) e. { r | ( R C_ r /\ ( r o. r ) C_ r ) } )
7 3 4 6 syl2anr
 |-  ( ( R e. V /\ Rel R ) -> ( dom R X. ran R ) e. { r | ( R C_ r /\ ( r o. r ) C_ r ) } )
8 intss1
 |-  ( ( dom R X. ran R ) e. { r | ( R C_ r /\ ( r o. r ) C_ r ) } -> |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } C_ ( dom R X. ran R ) )
9 7 8 syl
 |-  ( ( R e. V /\ Rel R ) -> |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } C_ ( dom R X. ran R ) )