Step |
Hyp |
Ref |
Expression |
1 |
|
relssdmrn |
|- ( Rel R -> R C_ ( dom R X. ran R ) ) |
2 |
|
ssequn1 |
|- ( R C_ ( dom R X. ran R ) <-> ( R u. ( dom R X. ran R ) ) = ( dom R X. ran R ) ) |
3 |
1 2
|
sylib |
|- ( Rel R -> ( R u. ( dom R X. ran R ) ) = ( dom R X. ran R ) ) |
4 |
|
trclublem |
|- ( R e. V -> ( R u. ( dom R X. ran R ) ) e. { r | ( R C_ r /\ ( r o. r ) C_ r ) } ) |
5 |
|
eleq1 |
|- ( ( R u. ( dom R X. ran R ) ) = ( dom R X. ran R ) -> ( ( R u. ( dom R X. ran R ) ) e. { r | ( R C_ r /\ ( r o. r ) C_ r ) } <-> ( dom R X. ran R ) e. { r | ( R C_ r /\ ( r o. r ) C_ r ) } ) ) |
6 |
5
|
biimpa |
|- ( ( ( R u. ( dom R X. ran R ) ) = ( dom R X. ran R ) /\ ( R u. ( dom R X. ran R ) ) e. { r | ( R C_ r /\ ( r o. r ) C_ r ) } ) -> ( dom R X. ran R ) e. { r | ( R C_ r /\ ( r o. r ) C_ r ) } ) |
7 |
3 4 6
|
syl2anr |
|- ( ( R e. V /\ Rel R ) -> ( dom R X. ran R ) e. { r | ( R C_ r /\ ( r o. r ) C_ r ) } ) |
8 |
|
intss1 |
|- ( ( dom R X. ran R ) e. { r | ( R C_ r /\ ( r o. r ) C_ r ) } -> |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } C_ ( dom R X. ran R ) ) |
9 |
7 8
|
syl |
|- ( ( R e. V /\ Rel R ) -> |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } C_ ( dom R X. ran R ) ) |