Step |
Hyp |
Ref |
Expression |
1 |
|
relssdmrn |
⊢ ( Rel 𝑅 → 𝑅 ⊆ ( dom 𝑅 × ran 𝑅 ) ) |
2 |
|
ssequn1 |
⊢ ( 𝑅 ⊆ ( dom 𝑅 × ran 𝑅 ) ↔ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) = ( dom 𝑅 × ran 𝑅 ) ) |
3 |
1 2
|
sylib |
⊢ ( Rel 𝑅 → ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) = ( dom 𝑅 × ran 𝑅 ) ) |
4 |
|
trclublem |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } ) |
5 |
|
eleq1 |
⊢ ( ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) = ( dom 𝑅 × ran 𝑅 ) → ( ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } ↔ ( dom 𝑅 × ran 𝑅 ) ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } ) ) |
6 |
5
|
biimpa |
⊢ ( ( ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) = ( dom 𝑅 × ran 𝑅 ) ∧ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } ) → ( dom 𝑅 × ran 𝑅 ) ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } ) |
7 |
3 4 6
|
syl2anr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ Rel 𝑅 ) → ( dom 𝑅 × ran 𝑅 ) ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } ) |
8 |
|
intss1 |
⊢ ( ( dom 𝑅 × ran 𝑅 ) ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } → ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } ⊆ ( dom 𝑅 × ran 𝑅 ) ) |
9 |
7 8
|
syl |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ Rel 𝑅 ) → ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } ⊆ ( dom 𝑅 × ran 𝑅 ) ) |