Metamath Proof Explorer


Theorem trclub

Description: The Cartesian product of the domain and range of a relation is an upper bound for its transitive closure. (Contributed by RP, 17-May-2020)

Ref Expression
Assertion trclub ( ( 𝑅𝑉 ∧ Rel 𝑅 ) → { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } ⊆ ( dom 𝑅 × ran 𝑅 ) )

Proof

Step Hyp Ref Expression
1 relssdmrn ( Rel 𝑅𝑅 ⊆ ( dom 𝑅 × ran 𝑅 ) )
2 ssequn1 ( 𝑅 ⊆ ( dom 𝑅 × ran 𝑅 ) ↔ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) = ( dom 𝑅 × ran 𝑅 ) )
3 1 2 sylib ( Rel 𝑅 → ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) = ( dom 𝑅 × ran 𝑅 ) )
4 trclublem ( 𝑅𝑉 → ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ∈ { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } )
5 eleq1 ( ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) = ( dom 𝑅 × ran 𝑅 ) → ( ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ∈ { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } ↔ ( dom 𝑅 × ran 𝑅 ) ∈ { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } ) )
6 5 biimpa ( ( ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) = ( dom 𝑅 × ran 𝑅 ) ∧ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ∈ { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } ) → ( dom 𝑅 × ran 𝑅 ) ∈ { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } )
7 3 4 6 syl2anr ( ( 𝑅𝑉 ∧ Rel 𝑅 ) → ( dom 𝑅 × ran 𝑅 ) ∈ { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } )
8 intss1 ( ( dom 𝑅 × ran 𝑅 ) ∈ { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } → { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } ⊆ ( dom 𝑅 × ran 𝑅 ) )
9 7 8 syl ( ( 𝑅𝑉 ∧ Rel 𝑅 ) → { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } ⊆ ( dom 𝑅 × ran 𝑅 ) )