Description: The converse of a binary relation swaps arguments. Theorem 11 of Suppes p. 61. (Contributed by NM, 10-Oct-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | brcnvg | |- ( ( A e. C /\ B e. D ) -> ( A `' R B <-> B R A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 | |- ( x = A -> ( y R x <-> y R A ) ) |
|
2 | breq1 | |- ( y = B -> ( y R A <-> B R A ) ) |
|
3 | df-cnv | |- `' R = { <. x , y >. | y R x } |
|
4 | 1 2 3 | brabg | |- ( ( A e. C /\ B e. D ) -> ( A `' R B <-> B R A ) ) |