Description: Ordered-pair membership in converse relation. (Contributed by NM, 13-May-1999) (Proof shortened by Andrew Salmon, 27-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | opelcnvg | |- ( ( A e. C /\ B e. D ) -> ( <. A , B >. e. `' R <-> <. B , A >. e. R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcnvg | |- ( ( A e. C /\ B e. D ) -> ( A `' R B <-> B R A ) ) |
|
2 | df-br | |- ( A `' R B <-> <. A , B >. e. `' R ) |
|
3 | df-br | |- ( B R A <-> <. B , A >. e. R ) |
|
4 | 1 2 3 | 3bitr3g | |- ( ( A e. C /\ B e. D ) -> ( <. A , B >. e. `' R <-> <. B , A >. e. R ) ) |