Metamath Proof Explorer
Table of Contents - 5.9. Elementary real and complex functions
- The "shift" operation
- cshi
- df-shft
- shftlem
- shftuz
- shftfval
- shftdm
- shftfib
- shftfn
- shftval
- shftval2
- shftval3
- shftval4
- shftval5
- shftf
- 2shfti
- shftidt2
- shftidt
- shftcan1
- shftcan2
- seqshft
- Signum (sgn or sign) function
- csgn
- df-sgn
- sgnval
- sgn0
- sgnp
- sgnrrp
- sgn1
- sgnpnf
- sgnn
- sgnmnf
- Real and imaginary parts; conjugate
- ccj
- cre
- cim
- df-cj
- df-re
- df-im
- cjval
- cjth
- cjf
- cjcl
- reval
- imval
- imre
- reim
- recl
- imcl
- ref
- imf
- crre
- crim
- replim
- remim
- reim0
- reim0b
- rereb
- mulre
- rere
- cjreb
- recj
- reneg
- readd
- resub
- remullem
- remul
- remul2
- rediv
- imcj
- imneg
- imadd
- imsub
- immul
- immul2
- imdiv
- cjre
- cjcj
- cjadd
- cjmul
- ipcnval
- cjmulrcl
- cjmulval
- cjmulge0
- cjneg
- addcj
- cjsub
- cjexp
- imval2
- re0
- im0
- re1
- im1
- rei
- imi
- cj0
- cji
- cjreim
- cjreim2
- cj11
- cjne0
- cjdiv
- cnrecnv
- sqeqd
- recli
- imcli
- cjcli
- replimi
- cjcji
- reim0bi
- rerebi
- cjrebi
- recji
- imcji
- cjmulrcli
- cjmulvali
- cjmulge0i
- renegi
- imnegi
- cjnegi
- addcji
- readdi
- imaddi
- remuli
- immuli
- cjaddi
- cjmuli
- ipcni
- cjdivi
- crrei
- crimi
- recld
- imcld
- cjcld
- replimd
- remimd
- cjcjd
- reim0bd
- rerebd
- cjrebd
- cjne0d
- recjd
- imcjd
- cjmulrcld
- cjmulvald
- cjmulge0d
- renegd
- imnegd
- cjnegd
- addcjd
- cjexpd
- readdd
- imaddd
- resubd
- imsubd
- remuld
- immuld
- cjaddd
- cjmuld
- ipcnd
- cjdivd
- rered
- reim0d
- cjred
- remul2d
- immul2d
- redivd
- imdivd
- crred
- crimd
- Square root; absolute value
- csqrt
- cabs
- df-sqrt
- df-abs
- sqrtval
- absval
- rennim
- cnpart
- sqr0lem
- sqrt0
- sqrlem1
- sqrlem2
- sqrlem3
- sqrlem4
- sqrlem5
- sqrlem6
- sqrlem7
- 01sqrex
- resqrex
- sqrmo
- resqreu
- resqrtcl
- resqrtthlem
- resqrtth
- remsqsqrt
- sqrtge0
- sqrtgt0
- sqrtmul
- sqrtle
- sqrtlt
- sqrt11
- sqrt00
- rpsqrtcl
- sqrtdiv
- sqrtneglem
- sqrtneg
- sqrtsq2
- sqrtsq
- sqrtmsq
- sqrt1
- sqrt4
- sqrt9
- sqrt2gt1lt2
- sqrtm1
- nn0sqeq1
- absneg
- abscl
- abscj
- absvalsq
- absvalsq2
- sqabsadd
- sqabssub
- absval2
- abs0
- absi
- absge0
- absrpcl
- abs00
- abs00ad
- abs00bd
- absreimsq
- absreim
- absmul
- absdiv
- absid
- abs1
- absnid
- leabs
- absor
- absre
- absresq
- absmod0
- absexp
- absexpz
- abssq
- sqabs
- absrele
- absimle
- max0add
- absz
- nn0abscl
- zabscl
- abslt
- absle
- abssubne0
- absdiflt
- absdifle
- elicc4abs
- lenegsq
- releabs
- recval
- absidm
- absgt0
- nnabscl
- abssub
- abssubge0
- abssuble0
- absmax
- abstri
- abs3dif
- abs2dif
- abs2dif2
- abs2difabs
- abs1m
- recan
- absf
- abs3lem
- abslem2
- rddif
- absrdbnd
- fzomaxdiflem
- fzomaxdif
- uzin2
- rexanuz
- rexanre
- rexfiuz
- rexuz3
- rexanuz2
- r19.29uz
- r19.2uz
- rexuzre
- rexico
- cau3lem
- cau3
- cau4
- caubnd2
- caubnd
- sqreulem
- sqreu
- sqrtcl
- sqrtthlem
- sqrtf
- sqrtth
- sqrtrege0
- eqsqrtor
- eqsqrtd
- eqsqrt2d
- amgm2
- sqrtthi
- sqrtcli
- sqrtgt0i
- sqrtmsqi
- sqrtsqi
- sqsqrti
- sqrtge0i
- absidi
- absnidi
- leabsi
- absori
- absrei
- sqrtpclii
- sqrtgt0ii
- sqrt11i
- sqrtmuli
- sqrtmulii
- sqrtmsq2i
- sqrtlei
- sqrtlti
- abslti
- abslei
- cnsqrt00
- absvalsqi
- absvalsq2i
- abscli
- absge0i
- absval2i
- abs00i
- absgt0i
- absnegi
- abscji
- releabsi
- abssubi
- absmuli
- sqabsaddi
- sqabssubi
- absdivzi
- abstrii
- abs3difi
- abs3lemi
- rpsqrtcld
- sqrtgt0d
- absnidd
- leabsd
- absord
- absred
- resqrtcld
- sqrtmsqd
- sqrtsqd
- sqrtge0d
- sqrtnegd
- absidd
- sqrtdivd
- sqrtmuld
- sqrtsq2d
- sqrtled
- sqrtltd
- sqr11d
- absltd
- absled
- abssubge0d
- abssuble0d
- absdifltd
- absdifled
- icodiamlt
- abscld
- sqrtcld
- sqrtrege0d
- sqsqrtd
- msqsqrtd
- sqr00d
- absvalsqd
- absvalsq2d
- absge0d
- absval2d
- abs00d
- absne0d
- absrpcld
- absnegd
- abscjd
- releabsd
- absexpd
- abssubd
- absmuld
- absdivd
- abstrid
- abs2difd
- abs2dif2d
- abs2difabsd
- abs3difd
- abs3lemd
- reusq0
- bhmafibid1cn
- bhmafibid2cn
- bhmafibid1
- bhmafibid2