Metamath Proof Explorer


Theorem s3tpop

Description: A length 3 word is an unordered triple of ordered pairs. (Contributed by AV, 23-Jan-2021)

Ref Expression
Assertion s3tpop ASBSCS⟨“ABC”⟩=0A1B2C

Proof

Step Hyp Ref Expression
1 df-s3 ⟨“ABC”⟩=⟨“AB”⟩++⟨“C”⟩
2 s2cl ASBS⟨“AB”⟩WordS
3 cats1un ⟨“AB”⟩WordSCS⟨“AB”⟩++⟨“C”⟩=⟨“AB”⟩⟨“AB”⟩C
4 2 3 stoic3 ASBSCS⟨“AB”⟩++⟨“C”⟩=⟨“AB”⟩⟨“AB”⟩C
5 s2prop ASBS⟨“AB”⟩=0A1B
6 5 3adant3 ASBSCS⟨“AB”⟩=0A1B
7 s2len ⟨“AB”⟩=2
8 7 opeq1i ⟨“AB”⟩C=2C
9 8 sneqi ⟨“AB”⟩C=2C
10 9 a1i ASBSCS⟨“AB”⟩C=2C
11 6 10 uneq12d ASBSCS⟨“AB”⟩⟨“AB”⟩C=0A1B2C
12 df-tp 0A1B2C=0A1B2C
13 12 eqcomi 0A1B2C=0A1B2C
14 13 a1i ASBSCS0A1B2C=0A1B2C
15 4 11 14 3eqtrd ASBSCS⟨“AB”⟩++⟨“C”⟩=0A1B2C
16 1 15 eqtrid ASBSCS⟨“ABC”⟩=0A1B2C