Metamath Proof Explorer


Theorem s2prop

Description: A length 2 word is an unordered pair of ordered pairs. (Contributed by Alexander van der Vekens, 14-Aug-2017)

Ref Expression
Assertion s2prop ASBS⟨“AB”⟩=0A1B

Proof

Step Hyp Ref Expression
1 df-s2 ⟨“AB”⟩=⟨“A”⟩++⟨“B”⟩
2 s1cl AS⟨“A”⟩WordS
3 cats1un ⟨“A”⟩WordSBS⟨“A”⟩++⟨“B”⟩=⟨“A”⟩⟨“A”⟩B
4 2 3 sylan ASBS⟨“A”⟩++⟨“B”⟩=⟨“A”⟩⟨“A”⟩B
5 s1val AS⟨“A”⟩=0A
6 5 adantr ASBS⟨“A”⟩=0A
7 6 uneq1d ASBS⟨“A”⟩⟨“A”⟩B=0A⟨“A”⟩B
8 df-pr 0A⟨“A”⟩B=0A⟨“A”⟩B
9 s1len ⟨“A”⟩=1
10 9 a1i ASBS⟨“A”⟩=1
11 10 opeq1d ASBS⟨“A”⟩B=1B
12 11 preq2d ASBS0A⟨“A”⟩B=0A1B
13 8 12 eqtr3id ASBS0A⟨“A”⟩B=0A1B
14 4 7 13 3eqtrd ASBS⟨“A”⟩++⟨“B”⟩=0A1B
15 1 14 eqtrid ASBS⟨“AB”⟩=0A1B