Metamath Proof Explorer


Theorem s1val

Description: Value of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s1val AV⟨“A”⟩=0A

Proof

Step Hyp Ref Expression
1 df-s1 ⟨“A”⟩=0IA
2 fvi AVIA=A
3 2 opeq2d AV0IA=0A
4 3 sneqd AV0IA=0A
5 1 4 eqtrid AV⟨“A”⟩=0A