| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-s2 |
|- <" A B "> = ( <" A "> ++ <" B "> ) |
| 2 |
|
s1cl |
|- ( A e. S -> <" A "> e. Word S ) |
| 3 |
|
cats1un |
|- ( ( <" A "> e. Word S /\ B e. S ) -> ( <" A "> ++ <" B "> ) = ( <" A "> u. { <. ( # ` <" A "> ) , B >. } ) ) |
| 4 |
2 3
|
sylan |
|- ( ( A e. S /\ B e. S ) -> ( <" A "> ++ <" B "> ) = ( <" A "> u. { <. ( # ` <" A "> ) , B >. } ) ) |
| 5 |
|
s1val |
|- ( A e. S -> <" A "> = { <. 0 , A >. } ) |
| 6 |
5
|
adantr |
|- ( ( A e. S /\ B e. S ) -> <" A "> = { <. 0 , A >. } ) |
| 7 |
6
|
uneq1d |
|- ( ( A e. S /\ B e. S ) -> ( <" A "> u. { <. ( # ` <" A "> ) , B >. } ) = ( { <. 0 , A >. } u. { <. ( # ` <" A "> ) , B >. } ) ) |
| 8 |
|
df-pr |
|- { <. 0 , A >. , <. ( # ` <" A "> ) , B >. } = ( { <. 0 , A >. } u. { <. ( # ` <" A "> ) , B >. } ) |
| 9 |
|
s1len |
|- ( # ` <" A "> ) = 1 |
| 10 |
9
|
a1i |
|- ( ( A e. S /\ B e. S ) -> ( # ` <" A "> ) = 1 ) |
| 11 |
10
|
opeq1d |
|- ( ( A e. S /\ B e. S ) -> <. ( # ` <" A "> ) , B >. = <. 1 , B >. ) |
| 12 |
11
|
preq2d |
|- ( ( A e. S /\ B e. S ) -> { <. 0 , A >. , <. ( # ` <" A "> ) , B >. } = { <. 0 , A >. , <. 1 , B >. } ) |
| 13 |
8 12
|
eqtr3id |
|- ( ( A e. S /\ B e. S ) -> ( { <. 0 , A >. } u. { <. ( # ` <" A "> ) , B >. } ) = { <. 0 , A >. , <. 1 , B >. } ) |
| 14 |
4 7 13
|
3eqtrd |
|- ( ( A e. S /\ B e. S ) -> ( <" A "> ++ <" B "> ) = { <. 0 , A >. , <. 1 , B >. } ) |
| 15 |
1 14
|
eqtrid |
|- ( ( A e. S /\ B e. S ) -> <" A B "> = { <. 0 , A >. , <. 1 , B >. } ) |