Metamath Proof Explorer


Theorem s1len

Description: Length of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s1len ⟨“A”⟩=1

Proof

Step Hyp Ref Expression
1 df-s1 ⟨“A”⟩=0IA
2 1 fveq2i ⟨“A”⟩=0IA
3 opex 0IAV
4 hashsng 0IAV0IA=1
5 3 4 ax-mp 0IA=1
6 2 5 eqtri ⟨“A”⟩=1