Metamath Proof Explorer


Theorem s1s5

Description: Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s1s5 ⟨“ABCDEF”⟩=⟨“A”⟩++⟨“BCDEF”⟩

Proof

Step Hyp Ref Expression
1 df-s5 ⟨“BCDEF”⟩=⟨“BCDE”⟩++⟨“F”⟩
2 s1cli ⟨“A”⟩WordV
3 s4cli ⟨“BCDE”⟩WordV
4 df-s6 ⟨“ABCDEF”⟩=⟨“ABCDE”⟩++⟨“F”⟩
5 s1s4 ⟨“ABCDE”⟩=⟨“A”⟩++⟨“BCDE”⟩
6 1 2 3 4 5 cats1cat ⟨“ABCDEF”⟩=⟨“A”⟩++⟨“BCDEF”⟩